ATLAS (A Toroidal LHC ApparatuS)
ATLAS (A Toroidal LHC ApparatuS) is one of the six particle detector experiments (ALICE, ATLAS, CMS, TOTEM, LHCb, and LHCf) currently being constructed at the Large Hadron Collider (LHC), a new particle accelerator at the European Organization for Nuclear Research (CERN) in Switzerland. When completed, ATLAS will be 46 metres long and 25 metres in diameter, and will weigh about 7,000 tonnes. The project involves roughly 2,000 scientists and engineers at 165 institutions in 35 countries. The construction was scheduled to be completed in June 2007, however is now stated to be April or mid-2008. The experiment is designed to observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators and might shed light on new theories of particle physics beyond the Standard Model.
The ATLAS collaboration, the group of physicists building the detector, was formed in 1992 when the proposed EAGLE ( Experiment for Accurate Gamma, Lepton and Energy Measurements) and ASCOT ( Apparatus with Super COnducting Toroids) collaborations merged their efforts into building a single,
The ATLAS collaboration, the group of physicists building the detector, was formed in 1992 when the proposed EAGLE (Experiment for Accurate Gamma, Lepton and Energy Measurements) and ASCOT (Apparatus with Super COnducting Toroids) collaborations merged their efforts into building a single, general-purpose particle detector for the Large Hadron Collider. The design was a combination of those two previous designs, as well as the detector research and development that had been done for the Superconducting Supercollider. The ATLAS experiment was proposed in its current form in 1994, and officially funded by the CERN member countries beginning in 1995. Additional countries, universities, and laboratories joined in subsequent years, and further institutions and physicists continue to join the collaboration even today. The work of construction began at individual institutions, with detector components shipped to CERN and assembled in the ATLAS experimental pit beginning in 2003.
ATLAS is designed as a general-purpose detector. When the proton beams produced by the Large Hadron Collider interact in the center of the detector, a variety of different particles with a broad range of energies may be produced. Rather than focusing on a particular physical process, ATLAS is designed to measure the broadest possible range of signals. This is intended to ensure that, whatever form any new physical processes or particles might take, ATLAS will be able to detect them and measure their properties. Experiments at earlier colliders, such as the Tevatron and Large Electron-Positron Collider, were designed based on a similar philosophy. However, the unique challenges of the Large Hadron Collider—its unprecedented energy and extremely high rate of collisions—require ATLAS to be larger and more complex than any detector ever built
Background
ATLAS experiment detector under construction in October 2004 in its experimental pit; the current status of construction can be seen here. Note the people in the background, for comparison.
The first cyclotron, an early type of particle accelerator, was built by Ernest O. Lawrence in 1931, with a radius of just a few centimetres and a particle energy of 1 MeV. Since then, accelerators have grown enormously in the quest to produce new particles of greater and greater mass. As accelerators have grown, so too has the list of known particles that they might be used to investigate. The most comprehensive model of particle interactions available today is known as the Standard Model of Particle Physics. With the important exception of the Higgs boson, all of the particles predicted by the model have been observed. While the standard model predicts that quarks, electrons, and neutrinos should exist, it does not explain why the masses of the particles are so very different. Due to this violation of "naturalness" most particle physicists believe it is possible that the Standard Model will break down at energies beyond the current energy frontier of about one TeV (set at the Tevatron). If such beyond-the-Standard-Model physics is observed it is hoped that a new model, which is identical to the Standard Model at energies thus far probed, can be developed to describe particle physics at higher energies. Most of the currently proposed theories predict new higher-mass particles, some of which are hoped to be light enough to be observed by ATLAS. At 27 kilometres in circumference, the Large Hadron Collider (LHC) will collide two beams of protons together, each proton carrying about 7 TeV of energy — enough energy to produce particles with masses up to roughly ten times more massive than any particles currently known — assuming of course that such particles exist. With an energy seven million times that of the first accelerator the LHC represents a "new generation" of particle accelerators.
Particles that are produced in accelerators must also be observed, and this is the task of particle detectors. While interesting phenomena may occur when protons collide it is not enough to produce them. Particle detectors must be built to detect particles, their masses, momentum, energies, charges, and nuclear spins. In order to identify all particles produced at the interaction point where the particles beams collide, particle detectors are usually designed with a similarity to an onion. The layers are made up of detectors of different types, each of which is adept at observing specific types of particles. The different features that particles leave in each layer of the detector allow for effective particle identification and accurate measurements of energy and momentum. (The role of each layer in the detector is discussed below.) As the energy of the particles produced by the accelerator increases, the detectors attached to it must grow to effectively measure and stop higher-energy particles. Once completed, ATLAS will be the largest detector ever built at a particle collider/
FOTOS
|